Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS). Dopamine receptors activate different effectors through not only G-protein coupling, but also signaling through different protein (dopamine receptor-interacting proteins) interactions. The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors.

Dopamine receptors are implicated in many neurological processes, including motivation, pleasure, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. Thus, dopamine receptors are common neurologic drug targets; antipsychotics are often dopamine receptor antagonists while psychostimulants are typically indirect agonists of dopamine receptors.

Subtypes

The existence of multiple types of receptors for dopamine was first proposed in 1976. There are at least five subtypes of dopamine receptors, D1, D2, D3, D4, and D5. The D1 and D5 receptors are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 receptors are members of the D2-like family. There is also some evidence that suggests the existence of possible D6 and D7 dopamine receptors, but such receptors have not been conclusively identified.

At a global level, D1 receptors have widespread expression throughout the brain. Furthermore, D1-2 receptor subtypes are found at 10-100 times the levels of the D3-5 subtypes.

D1-like family

The D1-like family receptors are coupled to the G protein Gsα. D1 is also coupled to Golf.

Gsα subsequently activates adenylyl cyclase, increasing the intracellular concentration of the second messenger cyclic adenosine monophosphate (cAMP).

D1 is encoded by the Dopamine receptor D1 gene (DRD1).
File:Dopamine Receptor Flowchart.png - Wikimedia CommonsD5 is encoded by the Dopamine receptor D5 gene (DRD5).

D2-like family

The D2-like family receptors are coupled to the G protein Giα, which directly inhibits the formation of cAMP by inhibiting the enzyme adenylyl cyclase.

D2 is encoded by the Dopamine receptor D2 gene (DRD2), of which there are two forms: D2Sh (short) and D2Lh (long):
The D2Sh form is pre-synaptically situated, having modulatory functions (viz., autoreceptors, which regulate neurotransmission via feedback mechanisms. It affects synthesis, storage, and release of dopamine into the synaptic cleft).
The D2Lh form may function as a classical post-synaptic receptor, i.e., transmit information (in either an excitatory or an inhibitory fashion) unless blocked by a receptor antagonist or a synthetic partial agonist.
D3 is encoded by the Dopamine receptor D3 gene (DRD3). Maximum expression of dopamine D3 receptors is noted in the islands of Calleja and nucleus accumbens.
D4 is encoded by the Dopamine receptor D4 gene (DRD4). The D4 receptor gene displays polymorphisms that differ in a variable number tandem repeat present within the coding sequence of exon 3. Some of these alleles are associated with greater incidence of certain disorders. For example, the D4.7 alleles have an established association with attention-deficit hyperactivity disorder.

Receptor heteromers

Dopamine receptors have been shown to heteromerize with a number of other G protein-coupled receptors. Especially the D2 receptor is considered a major hub within the GPCR heteromer network. Protomers consist of

Isoreceptors

D1–D2
D1–D3
D2–D3
D2–D4
D2–D5

Non-isoreceptors

D1–adenosine A1
D2–adenosine A2A
D2–ghrelin receptor
D2sh–TAAR1 (an autoreceptor heteromer)
D4–adrenoceptor α1B
D4–adrenoceptor β1

Signaling mechanism

Dopamine receptor D1 and Dopamine receptor D5 are Gs coupled receptors that stimulate adenylyl cyclase to produce cAMP, increasing intracellular calcium among other cAMP mediated processes. The D2 class of receptors produce the opposite effect, as they are Gαi coupled receptors, and block the activity of adenylyl cyclase. cAMP mediated protein kinase A activity also results in the phosphorylation of DARPP-32, an inhibitor of protein phosphatase 1. Sustained D1 receptor activity is kept in check by Cyclin-dependent kinase 5. Dopamine receptor activation of Ca2+/calmodulin-dependent protein kinase II can be cAMP dependent or independent.

The cAMP mediated pathway results in amplification of PKA phosphorylation activity, which is normally kept in equilibrium by PP1. The DARPP-32 mediated PP1 inhibition amplifies PKA phosphorylation of AMPA, NMDA, and inward rectifying potassium channels, increasing AMPA and NMDA currents while decreasing potassium conductance.

cAMP independent

D1 receptor agonism and D2 receptor blockade also increases mRNA translation by phosphorylating ribosomal protein s6, resulting in activation of mTOR. The behavioral implications are unknown. Dopamine receptors may also regulate ion channels and BDNF independent of cAMP, possibly through direct interactions. There is evidence that D1 receptor agonism regulates phospholipase C independent of cAMP, however implications and mechanisms remain poorly understood. D2 receptor signaling may mediate protein kinase B, arrestin beta 2, and GSK-3 activity, and inhibition of these proteins results in stunting of the hyperlocomotion in amphetamine treated rats. Dopamine receptors can also transactivate Receptor tyrosine kinases.

Beta Arrestin recruitment is mediated by G-protein kinases that phosphorylate and inactivate dopamine receptors after stimulation. While beta arrestin plays a role in receptor desensitization, it may also be critical in mediating downstream effects of dopamine receptors. Beta arrestin has been shown to form complexes with MAP kinase, leading to activation of extracellular signal-regulated kinases. Furthermore, this pathway has been demonstrated to be involved in the locomotor response mediated by dopamine receptor D1. Dopamine receptor D2 stimulation results in the formation of an Akt/Beta-arrestin/PP2A protein complex that inhibits Akt through PP2A phosphorylation, therefore disinhibiting GSK-3.

Role in the central nervous system

Dopamine receptors control neural signaling that modulates many important behaviors, such as spatial working memory. Dopamine also plays an important role in the reward system, incentive salience, cognition, prolactin release, emesis and motor function.

Non-CNS dopamine receptors

Cardio-pulmonary system

In humans, the pulmonary artery expresses D1, D2, D4, and D5 and receptor subtypes, which may account for vasodilatory effects of dopamine in the blood. Such receptor subtypes have also been discovered in the epicardium, myocardium, and endocardium of the heart. In rats, D1-like receptors are present on the smooth muscle of the blood vessels in most major organs.

D4 receptors have been identified in the atria of rat and human hearts. Dopamine increases myocardial contractility and cardiac output, without changing heart rate, by signaling through dopamine receptors.

Renal system

Dopamine receptors are present along the nephron in the kidney, with proximal tubule epithelial cells showing the highest density. In rats, D1-like receptors are present on the juxtaglomerular apparatus and on renal tubules, while D2-like receptors are present on the glomeruli, zona glomerulosa cells of the adrenal cortex, renal tubules, and postganglionic sympathetic nerve terminals. Dopamine signaling affects diuresis and natriuresis.

In disease

Dysfunction of dopaminergic neurotransmission in the CNS has been implicated in a variety of neuropsychiatric disorders, including social phobia, Tourette’s syndrome, Parkinson’s disease, schizophrenia, neuroleptic malignant syndrome, attention-deficit hyperactivity disorder (ADHD), and drug and alcohol dependence.

Attention-deficit hyperactivity disorder

Dopamine receptors have been recognized as important components in the mechanism of ADHD for many years. Drugs used to treat ADHD, including methylphenidate and amphetamine, have significant effects on neuronal dopamine signaling. Studies of gene association have implicated several genes within dopamine signaling pathways; in particular, the D4.7 variant of D4 has been consistently shown to be more frequent in ADHD patients. ADHD patients with the 4.7 allele also tend to have better cognitive performance and long-term outcomes compared to ADHD patients without the 4.7 allele, suggesting that the allele is associated with a more benign form of ADHD.

The D4.7 allele has suppressed gene expression compared to other variants.

Addictive drugs

Dopamine is the primary neurotransmitter involved in the reward pathway in the brain. Thus, drugs that increase dopamine signaling may produce euphoric effects. Many recreational drugs, such as cocaine and substituted amphetamines, inhibit the dopamine transporter (DAT), the protein responsible for removing dopamine from the neural synapse. When DAT activity is blocked, the synapse floods with dopamine and increases dopaminergic signaling. When this occurs, particularly in the nucleus accumbens, increased D1 and decreased D2 receptor signaling mediates the “rewarding” stimulus of drug intake.

Pathological gambling

Pathological gambling is classified as a mental health disorder that has been linked to obsessive-compulsive spectrum disorder and behavioral addiction. Dopamine has been associated with reward and reinforcement in relation to behaviors and drug addiction. The role between dopamine and pathological gambling may be a link between cerebrospinal fluid measures of dopamine and dopamine metabolites in pathological gambling. Molecular genetic study shows that pathological gambling is associated with the TaqA1 allele of the Dopamine Receptor D2 (DRD2) dopamine receptor. Furthermore, TaqA1 allele is associated with other reward and reinforcement disorders, such as substance abuse and other psychiatric disorders. Reviews of these studies suggest that pathological gambling and dopamine are linked; however, the studies that succeed in controlling for race or ethnicity, and obtain DSM-IV diagnoses do not show a relationship between TaqA1 allelic frequencies and the diagnostic of pathological gambling.

Schizophrenia

While there is evidence that the dopamine system is involved in schizophrenia, the theory that hyperactive dopaminergic signal transduction induces the disease is controversial. Psychostimulants, such as amphetamine and cocaine, indirectly increase dopamine signaling; large doses and prolonged use can induce symptoms that resemble schizophrenia. Additionally, many antipsychotic drugs target dopamine receptors, especially D2 receptors

Genetic hypertension

Dopamine receptor mutations can cause genetic hypertension in humans. This can occur in animal models and humans with defective dopamine receptor activity, particularly D1.

Parkinson’s disease

Parkinson’s disease is associated with the degeneration of dopamine and other neurodegenerative events. Parkinson’s disease patients are treated with drugs help dopamine function and neurotransmission. Research shows that Parkinson’s disease is linked to the class of dopamine agonists instead of specific agents. Reviews touch upon the need to control and regulate dopamine doses for Parkinson’s patients who may be predisposed to abusing drugs or not being able to tolerate high doses.

Dopamine receptors
Dopamine Receptors
Receptor Family Receptor Distribution Function Agonists Antagonists Uses of drugs that act on this receptor
Blood vessels CNS GI Tract Platelets PNS Smooth Muscle
WordPress Data Table
  • Post category:Pharmacology
  • Post last modified:April 14, 2021